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1 Introduction

This thesis describes the statistical properties of the Erdős-Rényi graph at the critical point.
The Erdős-Rényi graph is the most important model for a random graph and simply consists
of n vertices which are connected independently with probability p. In the classical paper “On
the evolution of Random Graphs” [6], it was proven that the Erdős-Rényi graph exhibits a phase
transition when we fix np = 1 and let n tend to infinity. Thus p = 1/n defines the critical point
of the model.
Phase transitions not only have very interesting mathematical properties as discussed in this

thesis, they are also very important in the natural sciences, for example when water freezes
below 0◦C or evaporates above 100◦C. A less obvious example for a phase transition is a virus
becoming epidemic after infecting a certain threshold of the population. This shows that it is
the mathematical concept of the phase transition rather than its realization which is impor-
tant to understand such transitions. The broad implications of such models have already been
commented on in the original paper by Erdős and Rényi [6]:

“The evolution of random graphs may be considered as a (rather simplified) model of
the evolution of certain real communication-nets, e.g. the railway-, road- or electric
network system of a country or some other unit, or the growth of structures of
anorganic or organic matter, or even the development of social relation. Of course,
if one aims at describing such a real situation, our model of a random graph should
be replaced by a more complicated but more realistic model.”

The authors thus already anticipated how their work was later received in the literature: the
model is too simple for real situations yet simple enough so that we can derive mathematical
properties.
In this thesis we will focus on one property of their model: how does the Erdős Rényi graph

look like at the phase transition when n tends to infinity? There are two possible viewpoints to
this question, a local and a global perspective, and here we will focus on the global one.
The mathematical tool to describe this property is a scaling limit : we change the nature of our

object from a graph to a metric space, so that we can rescale it. Thus small local pertubations
become trivial in the limit and the global structure emerges. Our goal is to find and characterize
a limit object as well as to prove convergence. We will first introduce the Erdős-Rényi graph
and the appropriate spaces formally. We then will work out a few properties of the uniform tree
which is a related random combinatorical object with the Brownian Continuum Random Tree
as scaling limit. Then we will discuss how to encode the Erdős Rényi graph in simpler functions
and prove the convergence of those functions before we will introduce the limit object and prove
the convergence of the Erdős-Rényi graph.
This thesis is based on the article “The continuum limit of critical random graphs” by Louigi

Addario-Berry, Nicolas Broutin and Christina Goldschmidt published in Probability Theory Re-
lated Fields in 2012. The goal of this thesis is to make the article accessible to undergraduate
students with basic knowledge in probability theory. Therefore certain arguments will be pre-
sented in more detail and more background is added to close the gap between undergraduate
knowledge and modern research.
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2 Preliminaries

2.1 Erdős-Rényi graph

Throughout this thesis, we will work with graphs usually denoted by G := G(V,E) where V is
a discrete set of vertices and E ⊆ V ×V is the set of edges. Sometimes we will denote the edges
of G by E(G) and the edges by V (G). We call two vertices x, y ∈ V neighbours if (x, y) ∈ E.
A tuple (x1, ...xk), xi ∈ V, 1 ≤ i ≤ k is a path in G if (xi, xi+1) ∈ E for all 1 ≤ i < k. As we
are only interested in finite graphs, without loss of generality we set V = [n] = {1, ..., n} for a
graph with n vertices. Furthermore, a graph T is a (discrete) tree if and only if it is connected
and has no cycles, i.e. there are no paths of the form (x1, x2, ..., xk, x1) with {x1, ..., xk} pairwise
different and k ≥ 2.
The Erdős-Rényi-Graph is a classical and simple model for a random graph: given n vertices,
an edge (x, y) exists independently for each edge with probability p ∈ [0, 1]. Formally:

Definition 2.1. The Erdős-Rényi-Graph G(n, p), n ∈ N, p ∈ [0, 1] is a random variable taking
values in the space of graphs on n vertices with its law being defined by:

P(G(n, p) = G) = p|E(G)|(1− p)(
n
2)−|E(G)|

for any graph G with n vertices.

An important observation about G(n, p) is its growth. When we increase the edge probability
p, there should be more edges, hence G(n, p) grows with increasing p in the following sense: for
each edge (x, y) sample a uniform variable Ux,y on [0, 1] independently and if Ux,y ≤ p, we let
(x, y) ∈ Ep ⊂ [n]× [n]. The set Ep together with [n] can be seen as random graph. In fact, this
graph has the distribution of the Erdős-Rényi graph as P((x, y) ∈ Ep) = P(Ux,y ≤ p) = p. For
p ≤ p′, the set Ep will be contained in Ep′ and thus this defines a coupling for {G(n, p) : p ∈
[0, 1]}. With respect to this coupling, the Erdős-Rényi graph with higher edge probability has
more edges than the one with lesser edge probability.
A particular interesting viewpoint on this growth arises when we consider G(n, λ/n) with

λ ∈ R+ and vary λ. The expected number of neighbours of a single vertex is (n − 1)p =
(n− 1) · λ/n = λ+O(1/n), thus if λ > 1, every vertex has more than one neighbour on average
and if λ < 1 there should be vertices without neighbours. Because of this, it is interesting to
calculate how many vertices are connected with each other in a single component in terms of n
when n tends to infinity. In fact, the Erdős-Rényi-Graph exhibits a phase transition at λ = 1,
when the graph jumps from being sparsely connected to highly connected. This phase transition

Figure 1: Three realizations of G(n, p) with n = 100 and p ∈ {0.01; 0.02; 0.08}, simulated using
the mathematica interface for igraph.
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2.1 Erdős-Rényi graph

was first proven by Paul Erdős and Alfréd Rényi in 1960 [6]. The best way to observe this
transition is to consider the size of the different components. For a given graph G and a vertex
v ∈ V (G) define the component containing v:

C(v) = {u ∈ V (G) : ∃ path connecting u and v} ∪ {v}

Furthermore, denote its size by |C(v)|. If G is a random graph like the G(n, p), |C(v)| is clearly
a random variable. Define also:

|Cmax| = max
v∈[n]

|C(v)|

as the size of the maximal component. The following two theorems provide insight on the
component sizes below and above the phase transition, respectively.

Theorem 2.2. Consider G(n, λ/n) with fixed λ < 1. Then for every a big enough there exists
δ = δ(a, λ) > 0 such that

P(|Cmax| ≥ a log n) = O(n−δ).

Theorem 2.3. Consider G(n, λ/n) with fixed λ > 1. Then there is 0 < ζλ < 1 such that for
every ν ∈ (1/2, 1), there exists δ = δ(ν, λ) > 0 such that

P(||Cmax| − ζλn| ≥ nν) = O(n−δ).

This means that for λ < 1 the largest component will be smaller than log n and for λ > 1
the largest component will contain a positive proportion of the vertices when n→∞. Based on
this, the cases λ < 1 and λ > 1 are called the sub- and supercritical regimes respectively and
λ = 1 is called the critical regime. We will not prove those theorems here - see [7, Theorem 4.4]
and [7, Theorem 4.8] for proofs - but we will discuss a link to branching processes [7, Theorem
4.2]:

Proposition 2.4. Consider G(n, λ/n) for fixed λ, then for each k ≥ 1:

P(|C(1)| ≥ k) ≤ P(T ≥ k)

where T denotes the total progeny of a Galton-Watson tree with law Bin(n, λ/n). The vertex 1
can be replaced by an arbitrary different choice of vertex.

As we know, Bin(n, λ/n) converges in distribution to Poisson(λ). Furthermore, Galton-
Watson trees exhibit a phase transition as well, precisely when the mean of the associated
offspring distribution is equal to 1. Thus, it is no surprise that the Erdős-Rényi exhibits a phase
transition as well.

Figure 2: Two realizations of G(n, λ/n) with n = 500 and λ ∈ {1/2; 3/2} illustrating the phase
transition, simulated using the mathematica interface for igraph.
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2.1 Erdős-Rényi graph

Proof of Proposition 2.4. Let Si := |{v ∈ [n] : d(1, v) = i}|, the number of vertices with distance
to i to the vertex with label 1, where d is the graph distance, i.e. the length of the shortest path
between two vertices. We also call the distance of a vertex to the vertex with label 1 the
generation of a vertex. Conditionally on (S1, ..., Si−1), we achieve following estimate for l ≥ 0:

P(Si ≥ l|Si−1 = si−1, ..., S1 = s1) ≤ P(there are at least l edges between a vertex at generation i− 1

and a vertex at generation i|Si−1 = si−1, ..., S1 = s1)

≤
∑

l1+...+lsi−1=l

P(X1
i ≥ l1, ..., X

si−1

i ≥ lsi−1)

for arbitrary positive integers s1, ..., si−1. The random variables are Xj
i are independent and

identically distributed according to Bin(n− 1−
∑i−1

j=1 sj , p). Let Y
1
i , ..., Y

si−1

i be i.i.d. random
variables distributed like Bin(1 +

∑i−1
j=1 sj , p) independent from Xj

i . Define Xj,∗
i = Xj

i + Y j
i , a

sequence of i.i.d. variables distributed like Bin(n, p). Furthermore, we have Xj,∗
i ≥ Xj

i almost
surely for any j. Thus:

P(Si ≥ l|Si−1 = si−1, ..., S1 = s1) ≤
∑

l1+...+lsi−1=l

P(X1,∗
i ≥ l1, ..., Xsi−1,∗

i ≥ lsi−1)

= P(S′i ≥ l|S′i−1 = si−1, ..., S
′
1 = s1)

where S′j counts the offspring of a Galton-Watson tree with offspring distribution Bin(n, p) after
j generations. By induction, we can therefore couple Si and S′i such that Si ≤ S′i almost surely
for any i. Thus:

|C(1)| = 1 +

n∑
i=1

Si ≤ 1 +

n∑
i=1

S′i ≤ 1 +

∞∑
i=1

S′i = T

which concludes the proof.

Naturally, one wants to analyze what happens in the case λ = 1. David Aldous proved the
following theorem:

Theorem 2.5 ([2, Thm. 3]). Consider G(n, λ/n) with λ = 1. There exists a non-trivial random
variable Z such that:

n−2/3|Cmax|
d→ Z.

He even provides an explicit description of Z: Consider the process

W 0(t) := W (t)− t2

2

where (W (t), t ≥ 0) is a standard Brownian motion. Then Z is distributed like the length of the
longest excursion of the reflected process W 0(t) − min0≤s≤tW

0(s). In fact, the original result
was stronger: he proved that not only the largest component is of size order n2/3, but the whole
sequence of component sizes. But because we only want to look at the largest component it is
enough to know its size. The way we want to look at the critical Erdős Rényi graph is that it is
almost a tree, on the one hand it is not connected - but there are individual big components - and
on the other hand each component has very few cycles, if any at all. Thus we can hypothesize
that the limit object of the Erdős-Rényi graph looks like an R tree with a few added cycles. We
will later see this to be true.
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2.2 Real trees and the Gromov-Hausdorff distance

Figure 3: A realization of the critical G(n, 1/n) with n = 1000, simulated using the mathematica
interface for igraph.

2.2 Real trees and the Gromov-Hausdorff distance

To describe the limit of the Erdős-Renyi graph which we will construct later, we need some
more ingredients: a continuous equivalent of graphs and a topology that allows us to compare
different graphs. Therefore we define R-trees and Gromov-Hausdorff distance.

Definition 2.6. A metric space (X, d) is an R− tree if it is geodesic and acyclic, where:

1. (X, d) geodesic ⇔ for all x, y ∈ X there is an isometric embedding f : [0, d(x, y)] → X
such that f(0) = x and f(d(x, y)) = y.

2. (X, d) acyclic ⇔ there are no embedded circles in X, i.e. there are no injective continuous
maps of the form f : S1 → X where S1 is the unit circle.

To see why is this a continuous generalization of trees, we explain how to construct an R-tree
from a tree: if given a tree T , identify each edge with a line segment of length 1 and connect the
ends of the line segments if there is a vertex joining the corresponding edges. This yields a space
XT and we define the metric dT on XT as the length of the shortes path connecting two points.
Naturally, the two conditions of a graph being a tree - connected and no cycles - translate into
our conditions for a metric space to be an R-tree: geodesic and acyclic. The second point of the
definition can also be substituted by requiring the geodesics between two points to be unique for
all points, just like there is a unique shortest path between any two vertices in a discrete tree.
Constructing an R-tree from a discrete tree is only one way to obtain an R-tree, another

context in which R-trees appear naturally is the following: Consider a continuous function
g : [0, 1]→ [0,∞[ with g(0) = g(1) = 0. We define a pseudo-distance on [0, 1]:

dg(s, t) := g(s) + g(t)− 2 inf
r∈[s∧t,s∨t]

g(r) for all s, t ∈ [0, 1]

Using this, define an equivalence relation:

s ∼ t⇔ dg(s, t) = 0

such that dg is a distance on Tg := [0, 1]/ ∼. We denote the canonical projection by ρg : [0, 1]→
Tg.
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2.2 Real trees and the Gromov-Hausdorff distance

Figure 4: The black function g on the left encodes the real tree on the right. The horizontal
red lines are each identified to a single point where as the vertical red lines become
the branches of the tree. Furthermore, local maxima become leafs and local minima
branching points.

Theorem 2.7 ([9, Thm. 3.1]). The metric space (Tg, dg) is a real tree.

This is perhaps the most important way to construct an R-tree. Furthermore, we can replace
the interval [0, 1] by [0, n], n ∈ N and the resulting space will still be an R-tree. By an appropiate
choice of function, we can also encode an R-tree which corresponds to a discrete tree. This
function is called contour function and we will introduce it later. See Figure 4 for an example.
So now that we have a way to generalize trees we need a way to compare them. To do that,

one can define a distance on the space of compact metric spaces. But first, we need a distance
for compact sets in the same metric space. Recall:

Definition 2.8. (Hausdorff distance)
For a metric space (X, d) and compact subsets K,K ′ ⊆ X, define the Hausdorff distance between
K and K ′:

dH(K,K ′) := inf{ε > 0|K ⊆ Fε(K ′) and K ′ ⊆ Fε(K)}

where
Fε(K) := {x ∈ X|dist(x,K) ≤ ε}.

Now that we can measure the distance between compact sets, we want to measure the distance
between two spaces by embedding them into any bigger metric space in a way that preserves the
topology of the initial spaces. Then, the spaces become subspaces and we can use the notion of
Hausdorff distance again. The optimal distance attainable by choice of embedding is then called
the Gromov-Hausdorff distance. Formally:

Definition 2.9. (Gromov-Hausdorff distance)
For two compact metric spaces (X, d), (X ′, d′) define the Gromov-Hausdorff distance:

dGH(X,X ′) := inf
(Y,δ),φ,φ′

δH(φ(X), φ′(X ′))

where (Y, δ) is any metric space and φ, φ′ are isometric embeddings of X,X ′ into Y . Also, δH
is the induced Hausdorff distance by δ.

Claim: The Gromov-Hausdorff distance is in fact a metric on the set of compact spaces, if we
identify X,X ′ if they are isometrically isomorphic.

Proof. Proof of Claim. Let (X1, d1), (X2, d2), (X3, d3) be compact metric spaces:

9



2.2 Real trees and the Gromov-Hausdorff distance

• dGH(X1, X2) = 0 =⇒ ∃ isometric isomorphism X1 → X2 =⇒ X = X ′ by identification.

• dGH(X1, X2) = dGH(X2, X1) by symmetry of inf and δH in the definition.

• Assume we have space (Y12, δ12) such that we can embed X1, X2 into Y12 isometrically
and another space (Y23, δ23) such that we can embed X2, X3 into Y23 isometrically. Define
δ13 := infx2∈X2{δ12(x1, x2) + δ23(x2, x3)} for x1 ∈ X1, x3 ∈ X3. Define:

δ(x, x′) =


d1(x, x′) if x, x′ ∈ X1

d3(x, x′) if x, x′ ∈ X3

δ13(x, x′) if x ∈ X1, x
′ ∈ X3

this defines a metric on the set X1 ∪X3. (positive definite and symmetry clear, triangle
inequality inherited by the other distances) Hence, X1 ∪ X3 is a metric space, such that
we can embed X1, X3 isometrically. We conclude:

δ12,H(X1, X2) + δ23,H(X2, X3) ≥ δH(X1, X3) ≥ dGH(X1, X3)

Taking the infimum on the left side yields the triangle inequality.

The disadvantage of the definition of Gromov-Hausdorff distance is that the infimum ranges
over all metric spaces (as long as there are suitable embeddings) and even finding a space
that comes close to realizing the infimum may be very counterintuitive. Luckily, there is a
characterisation for Gromov-Hausdorff distance that only relies on measuring distances in the
spaces themselves without embedding them into a larger space:

Proposition 2.10. Let (X, d), (X ′, d′) be two metric spaces, then:

dGH(X,X ′) =
1

2
inf

R correspondence
dis R

where R ⊂ X×X ′ is a correspondence if for every x ∈ X there is an x′ ∈ X ′ such that (x, x′) ∈ R
and symmetrically for X ′ and

dis R = sup
(x1,x′1),(x2,x′2)∈R

|d(x1, x2)− d′(x′1, x′2)|

is the distortion of the correspondence R.

Proof. We complete the proof of [5, Theorem 7.3.25].
Assume r > dGH(X,X ′). Then there is a metric space (Z, δ) such that X,X ′ are isometric to
subspaces of Z and δH(X,Y ) < r. Define R ⊂ X ×X ′:

R = {(x, x′) ∈ (X,X ′) : δ(x, x′) < r}

and R is a correspondence: assume the opposite, then there would be (without loss of generality)
x0 ∈ X such that δ(x0, x

′) ≥ r for all x′ ∈ X ′. But this contradicts δH(X,X ′) < r, thus R is a
correspondence. Observe:

dis R = sup
(x1,x′1),(x2,x′2)∈R

|d(x1, x2)− d′(x′1, x′2)| = sup
(x1,x′1),(x2,x′2)∈R

|δ(x1, x2)− δ(x′1, x′2)|

≤ sup
(x1,x′1),(x2,x′2)∈R

δ(x1, x
′
1) + δ(x2, x

′
2) < 2r
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2.2 Real trees and the Gromov-Hausdorff distance

Taking the infimum over r > dGH(X,X ′) yield the inequality

dGH(X,X ′) ≥ 1

2
inf

R correspondence
dis R.

On the other hand, let R be any correspondence and let dis R = 2r. Consider the disjoint union
X tX ′ and define a metric δ on X tX ′:

δ(a, b) =


d(a, b) if a, b ∈ X
d′(a, b) if a, b ∈ X ′

inf(x,x′)∈R{d(a, x) + r + d′(b, x′)} if a ∈ X, b ∈ X ′

Assume r > 0 without loss of generality. The symmetry of δ and δ(a, b) ≥ 0 are clear. Assume
δ(a, b) = 0: if a, b are both elements of X, then a = b, because d is a metric, the same holds if
a, b are both elements of X ′. If a ∈ X and b ∈ X ′, then δ(a, b) ≥ r > 0, thus a 6= b. For the
triangle inequality, it is enough to look at a, c ∈ X, b ∈ X ′, then:

δ(a, b) + δ(b, c) = inf
(x,x′),(y,y′)∈R

d(a, x) + d(c, x) + 2r + d′(b, x′) + d′(b, y′)

≥ inf
(x,x′),(y,y′)∈R

d(a, x) + d(c, x) + 2r + d′(x′, y′)

≥ inf
(x,x′),(y,y′)∈R

(d(a, c)− d(c, x)) + (d(x, c)− d(x, y)) + d′(x′, y′)

≥ d(a, c) + 2r − sup
(x,x′),(y,y′)∈R

|d′(x′, y′)− d(x, y)|

= d(a, c) + 2r − dis R
= δ(a, c)

by applying the triangle inequality in X and X ′. The other cases follow from symmetry and
the fact that d, d′ are metrics. Furthermore, identify X and X ′ with the subspaces of X t X ′
isometric to X and X ′. Then for any x ∈ X:

dist(x,X ′) = inf
x′∈X′

δ(x, x′) = inf
x′∈X′

inf
(x0,x′0)∈R

r + d(x, x0) + d′(x′, x′0)

≤ r + inf
(x,x′0)∈R

inf
x′∈X′

d(x, x) + d(x′, x′0) = r

because there is a x′0 ∈ X ′, such that (x, x′0) ∈ R. A symmetric argument holds for all x′ ∈ X ′
and thus we conclude that δH(X,X ′) ≤ r. Thus, dGH(X,X ′) ≤ r = 1

2dis R. With the reverse
inequality we showed earlier, we can derive the claim.

With the notation of Theorem 2.7 we derive the following corollary:

Corollary 2.11 ([9, Cor. 3.7]). Let g, g′ : [0, 1] → [0,∞[ be two continuous functions with
g(0) = g(1) = g′(0) = g′(1) = 0 and Tg, Tg′ their induced R-trees, then:

dGH(Tg, Tg′) ≤ 2‖g − g′‖

where ‖g − g′‖ = supt∈[0,1] |g(t)− g′(t)| is the supremum norm throughout the thesis.

Proof. Let ρg, ρg′ be the projections from [0, 1] into Tg and Tg′ respectively. Let:

R :=
{

(a, a′) : ∃t ∈ [0, 1] such that a = ρg(t) and a′ = ρg′(t)
}
⊂ Tg × Tg′

which is a correspondence by construction. By Proposition 2.10:
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2.3 Continuum random tree

dGH(Tg, Tg′) ≤
1

2
dis R =

1

2
sup

(a,a′),(b,b′)∈R
|dg(a, b)− dg′(a′, b′)|

=
1

2
sup

s,t∈[0,1]
|g(s) + g(t)− g′(s)− g′(t)− 2 inf

r∈[s∧t,s∨t]
g(r) + 2 inf

r′∈[s∧t,s∨t]
g′(r′)|

≤ sup
t∈[0,1]

|g(t)− g′(t)|+ sup
s,t∈[0,1]

| inf
r∈[s∧t,s∨t]

g(r)− inf
r′∈[s∧t,s∨t]

g′(r′)|

g,g′≥0

≤ ‖ g − g′‖+ sup
s,t∈[0,1]

inf
r′∈[s∧t,s∨t]

|g(r′)− g′(r′)|

≤ 2‖g − g′‖

Remark: Instead of (ordinary) metric spaces we will also consider rooted metric spaces, i.e.
metric spaces (X, d, τ) with a distinguished point τ ∈ X. Everything from above holds, if the
Gromov-Hausdorff distance is changed slightly to accomodate the roots. Under the same as-
sumptions and notation of Definition 2.9, define for two rooted metric spaces (X, d, τ), (X ′, d′, τ ′):

dGH(X,X ′) := inf
(Y,δ),φ,φ′

max
{
δH(φ(X), φ′(X ′)), δ(φ(τ), φ′(τ ′))

}
Furthermore, for a set R to be a correspondence between (X, d, τ) and (X ′, d′, τ ′) require addi-
tionally that (τ, τ ′) ∈ R.

2.3 Continuum random tree

The goal for this section is to find a scaling limit for uniform trees on [n] vertices. In the previous
section, we have seen that a continuous function with certain constraints induces a real tree.
Now, we have to reverse this procedure: given a discrete tree T , how can we turn it into a
function, such that it commutes with the earlier procedure illustrated in Theorem 2.7. This is
achieved in the following way: Embed the tree in the plane and imagine a particle that explores
the tree from left to right at unit speed starting at the root1. Let C(s) be its distance to the
root at time s such that every edge is traversed exactly twice. Clearly, the total time required
is 2(n − 1), as there are n − 1 edges. The resulting function (C(s), 0 ≤ s ≤ 2(n − 1)) is called
the contour function. See Figure 5 for an example.
We now want to use contour functions to analyse uniform trees. If we consider µ to be the

critical geometric distribution - i.e. µ(k) = (1
2)k+1 for k ∈ N0 - there is a useful connection

between Galton-Watson trees, uniform trees and the symmetric random walk.

Lemma 2.12. Let Tn be a uniform tree on [n] and Tµ a Galton-Watson tree with the critical
geometric distribution µ as offspring distribution. Then:

P(Tµ = T
∣∣|Tµ| = n) = P(Tn = T )

for any tree T on [n].

Proof. Let T be a tree on [n] and denote the set of all trees on [n] by T. Recall the definition of
uniform trees:

P(Tn = T ) =
1∑
T ′∈T 1

1This can be defined in a cleaner way once we introduce the depth first ordering of the vertices in the next
section.

12



2.3 Continuum random tree

Figure 5: A tree with 8 vertices and its contour function. The red line sympolizes the path of
the particle. This is the inverse procedure to the construction used in Theorem 2.7
where we construct an R-tree from a continuous function.

This means every possible tree with n vertices is equally likely. Now let (kT1 , ..., k
T
n ) ∈ Nn be

such that kTj is the number of offspring of vertex j in the tree T . Because every tree with n

vertices has n− 1 edges, we have
∑n

j=1 k
T
j = n− 1, independently of T . Then:

P(Tµ = T
∣∣|Tµ| = n) =

P(Tµ = T )∑
T ′∈T P(Tµ = T ′)

=

∏n
i=1 µ(kTj )∑

T ′∈T
∏n
i=1 µ(kT

′
j )

=

∏n
i=1(1

2)k
T
j +1∑

T ′∈T
∏n
i=1(1

2)k
T ′
j +1

=
(1

2)2n∑
T ′∈T(1

2)2n
=

1∑
T ′∈T 1

= P(Tn = T )

Recall the simple random walk on Z: let (Xi)i∈N be a sequence of i.i.d. random variables
such that P(X1 = 1) = 1

2 = P(X1 = −1). Define S0 = 0 and Sn =
∑n

i=1Xi, n ≥ 1 and call the
sequence (Sn)n∈N0 the simple random walk. Define a stopping time T as follows:

T = inf{n ∈ N
∣∣Sn = −1} <∞ a.s.

Then we call {S0, ..., ST−1} an excursion of the simple random walk.

Proposition 2.13 ([9, Prop. 2.6]). The tree corresponding to an excursion of the simple random
walk is a Galton-Watson tree with the critical geometric offspring distribution.

Proof. We complete the proof of [9]. The key to this propositon is the fact that a subtree of
a Galton-Watson tree rooted at a descendant of the root is distributed like the Galton-Watson
tree itself.
We want to know how many children the root has. For that we need to know how many times

Sn touches 0 before Sn hits −1. To achieve this formally, define the upcrossing and downcrossing
times:

U1 := inf{n ≥ 1 : Sn = 1} and V1 := inf{n ≥ U1 : Sn = 0}

and inductively:

Uj+1 := inf{n ≥ Vj : Sn = 1} and Vj+1 inf n ≥ Uj+1 : Sn = 0

13



2.3 Continuum random tree

Let K := sup{j : Uj ≤ T} and if the set is empty let K = 0. By the way we construct a tree
out of a contour function, we clearly have that K is distributed like the number of children of
the root. Observe:

P(K = 0) = P(U1 > T ) = P(S1 = −1) =
1

2

And inductively for k ≥ 1 by the Markov property:

P(Uk ≤ T
∣∣Uk−1 ≤ T ) = P(SUk−1+1

∣∣SUk−1
= 0) = P(XUk−1+1 = 1) =

1

2

=⇒ P(K = k) =

(
1

2

)k+1

Thus, the distribution of the number of offspring of the root is the critical geometric distribution.
Conditionally on {K = k}, there are k excursions above 1 of the form

i ∈ {1, ..., k} : SUi+n − 1, 0 ≤ n ≤ Vi − Ui − 1

These excursions are independent for all i ∈ {1, ..., k} and distributed like an excursion of the
simple random walk. Thus, the subtree corresponding to the i−th child of the root is distributed
like the tree itself. This, together with the fact that the root has the critical geometric offspring
distribution characterises the tree uniquely as Galton-Watson tree with the desired offspring
distribution.

To close the gap between discrete trees and discrete excursions, and continuous trees and
continuous excursions we need one landmark result of probabilty theory - basically an extension
of the central limit theorem to continuous functions2 - proven by Monroe Donsker in 1952, see
for example [4].

Theorem 2.14. Let (Xi)i∈N be i.i.d and P(X1 = 1) = 1
2 = P(X1 = −1) and consider W (n) =

(Stn =
∑bntc

i=1 Xi + (nt − bntc)Xbntc+1, t ∈ [0, 1]) and let W = (W (t), t ∈ [0, 1]) a standard
Brownian motion. Then:

1√
n

(W (n)(t), t ∈ [0, 1])
d→ (W (t), t ∈ [0, 1])

in C([0, 1],R), equipped with the uniform topology.

This means, that the rescaled and interpolated simple random walk converges in distribution
to a Brownian motion. In light of Proposition 2.13 we define the Continuum Random Tree3:

Definition 2.15. Let (e(t), 0 ≤ t ≤ 1) be a standard Brownian excursion. T := Te is called the
Continuum Random Tree.

By standard Brownian excursion we mean a path of the standard Brownian Motion with
length 1 such that almost surely: e(0) = e(1) = 0, e(t) > 0 for 0 < t < 1 and e(·) is continuous.
Theorem 2.7 shows that T is almost surely an R-tree. This is in fact a well-defined notion, check
[9] for reference. The next theorem was again proven by Aldous [3, Theorem 8] and is our key
ingredient to analyze the scaling limit of the Erdős-Rényi graph.

Theorem 2.16. Let Tn be a uniform tree on [n] and T the Continuum Random Tree. If we
view Tn as a compact metric space, then:

n−1/2Tn
d→ T

as compact metric spaces with respect to the Gromov-Hausdorff topology.
2We only present the special case of the simple random walk, the theorem holds in fact if the Xi are arbitrary
real random variables, as long as they have finite variance.

3Also known as Brownian Continuum Random Tree.
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2.3 Continuum random tree

Figure 6: A realization of the Continuum Random Tree, picture by Igor Kortchemski, source:
igor-kortchemski.perso.math.cnrs.fr

Proof Sketch. The essence of the proof is that a uniform tree can be represented by an excursion
of the simple random walk conditioned to become −1 at time n by Proposition 2.13. Then sim-
ilarly to Theorem 2.14, the interpolated rescaled excursion of the simple random walk converges
uniformly to an Brownian excursion and by Corollary 2.11 their corresponding R-trees converge
in Gromov-Hausdorff distance. The main technicality of the proof lies in the fact that we need
to extract information from zero sets of the standard Brownian motion and that we need to
condition on the excursion of the simple random walk. For a full and comprehensive proof see
[9, Theorem 3.9].

We end this section with a short remark about the properties of the continuum random tree:
the continuum random tree is defined by identifying points of the line segment [0, 1], denote
the projection [0, 1] → T by ρ. This line segment is naturally equipped with the Lebesgue
(probability) measure µ. Thus, we can equip T with the pushforward measure with respect to
ρ. Call x ∈ T a leaf if T \{x} is connected.

Proposition 2.17. Let L be the set of leaves of T . Then:

µ(ρ−1(L)) = 1

This property is sometimes called T being ”leaf-dense”. We can interpret it as follows: if
we select a vertex of T uniformly at random, it will almost surely be a leaf. For a proof of
Proposition 2.17, see [3, Theorem 3].
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3 Encoding random graphs

In this section we will deal with how to label a tree or a graph in a smart and useful way by
using the so called depth first search. Using this labeling, we can encode a tree as function in
a different way than in the previous chapter. This provides us with a correspondence between
trees and certain functions. Furthermore, we will extend the labeling to graphs and in particular
connected random graphs. We then look at two ways to construct a graph using the functions
obtained by the labeling process and study their distribution as well as the difference between
them.

3.1 Depth first search

Assume we are given a rooted and connected graph G = G(V,E) with vertices V = [m] =
{1, ...,m} where we choose the vertex with label 1 as the root. We will define an algorithm that
explores G and thereby encodes the structure of the graph:

Definition 3.1. Ordered depth first search - oDFS(G)
Initialization Set O0 = (1),A0 = ∅
Step i (0 ≤ i ≤ m − 1): Let vi be the first vertex of Oi and let

Ni be the neighbors of vi. To construct Oi+1, remove vi
from Oi and add the vertices of Ni\Ai to the start of Oi in
increasing order in terms of vertex label. Furthermore, set
Ai+1 = Ai ∪ {vi}.

Naturally, the algorithm will end when Om = ∅. Before that, it will visit every vertex exactly
once and thereby induce a new labeling on G, i.e. we will label a vertex according to the step
when it was visited. Furthermore, oDFS(G) induces a spanning tree (a subtree containing all
vertices) of G: we connect the two vertices u, v if v ∈ Ni given u is explored at step i. We refer
to the resulting tree as ordered-depth first tree of G. Because the order of vertices traversed is
unique, the resulting tree is also unique. Next, we define the depth-first walk (X(i))0≤i<m of G:
let X(i) = |Oi| − 1. This way, X(i) counts the vertices seen, but not yet fully explored at time
i. For convenience, we will use a continuous interpolation of X(i); s ∈ [0,m− 1]:

X(s) := X(bsc) + (s− bsc) · (X(bsc+ 1)−X(bsc))

This seems like a rather complicated construction, but the intuition behind oDFS(G) is simple:
the algorithm explores G such that it always tries to go one step further away from the root
if possible. If that is not possible it will backtrack until it is possible to go deeper again. See
figure 7 for an example of this procedure.
In the special case that we deal with a tree T , we will also define the area of the tree:

a(T ) :=

m−1∑
i=1

X(i)

which is also the area under the graph of the depth first walk. Intuitively, the area of a tree
measures how much the tree is branched, with bias to branching close to the root.
Now, we ask ourselves how to reconstruct a graph if we are given a tree T as the result of

oDFS(G). This means, we may add edges to T only in a way, such that the ordered-depth
first tree of the resulting graph is still T . Therefore, we define that an egde (vi, vj) /∈ E(T ) is
permitted by oDFS(T ) if, during the search procedure on T , there is a k such that vi, vj ∈ Ok.

Lemma 3.2 ([1, Lemma 7]). Given a tree T and a connected graph G on [m], then T is
the ordered-depth first tree of G ⇐⇒ G can be obtained from T by adding edges permitted by
oDFS(T ).
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3.1 Depth first search

Figure 7: A graph with 16 vertices with arbitrary labeling on the left, and depth first labeling
on the right. The dotted edges will not be traveresed during the depth first search.

Proof. ⇐= First of all, T clearly has to be a subgraph of G. We continue by induction over
k, the number of edges we need to add to T to obtain G. The case k = 0 is trivial, as this
means T = G. Suppose k ≥ 1: Assume we would need to add k edges to T to obtain G
and the statement is true for all graphs, where we would need to add k − 1 edges. Also, let
v0, ..., vm−1 be the ordering on [m] obtained by running oDFS(T ). Let (vi, vj); i < j be the first
edge of G not contained in T - first in the sense of the vertex ordering, i.e. there is no edge
(vi′ , vj′) ∈ E(G)\E(T ) such that i′ < i. By definition, vertex vi is explored at timestep i of
oDFS(T ) and the behaviour of oDFS(T ) and oDFS(G) prior to this step is the same. Hence,
because (vi, vj) is a permitted edge and vj is explored after vi, we have vj ∈ Oi(T ) = Oi(G).
We conclude, (vi, vj) /∈ E(T ) and using the induction hypothesis we achieve the desired result.

=⇒ Again, let v0, ..., vm−1 be the ordering of [m] obtained from oDFS(T ). Suppose there
is an edge in E(G)\E(T ) that is not permitted by oDFS(T ) and look for a contradiction. Let
(vi, vj), i < j be the first of those edges (in the same sense as above). Again, the behaviour of
oDFS(T ) and oDFS(G) is identical up to step i. Because (vi, vj) is not permitted and vj will
be visited after vi, we have vj /∈ Oi(T ) = Oi(G). On the other hand, vj is a neighbour of vi in
G, which means vj ∈ Ni(G) (vi, vj) ∈ E(T ) contradicting our assumption.

We will derive one more lemma in this section: Lemma 3.2 tells us that we can think of a
connected graph as the amalgamation of a spanning tree and a set of permitted edges. Thus it
is interesting to look at the number of permitted edges in a certain tree:

Lemma 3.3 ([1, Lemma 6]). Let T be a tree on [m]. The number of edges permitted by oDFS(T )
is exactly a(T ).

Proof. We will proceed by induction on m. The cases m ∈ {1, 2} are trivial. Let m ≥ 3 and
denote the neigbours of 1 with v1, ..., vi for some i ≥ 1. Furthermore, if we remove 1 from T , we
will receive i trees, each rooted at vj , 1 ≤ j ≤ i. Denote those trees by T1, ..., Ti and the depth
first walks of T1, ..., Ti by XT1(t), ..., XTi(t). By definition, X(T ) starts at 1, uncover v1, ..., vi
and then run independently on the Tj .
We will now look at the number of permitted edges between the Tj , i.e. edges (x, y) with

x ∈ Tj , y ∈ Tj′ with j 6= j′: assume x ∈ Tj . Then y can only be one of the roots of the other
subtrees with an higher index than j, as the other vertices are either fully explored or not yet
uncovered. We conclude that the number of permitted edges of this kind is

i∑
j=1

(i− j)|Tj |.
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3.2 Two ways of reconstructing a graph

Furthermore, the number of permitted edges with both ends in a single subtree is exactly the
area of that subtree - by induction hypothesis. In the end, the number of permitted edges is

i∑
j=1

((i− j)|Tj |+ a(Tj)) =
i∑

j=1

|Tj |∑
k=1

((i− j) +XTj (k))
(∗)
=

m∑
t=1

X(t) = a(T )

(∗): At timestep t; 0 < t < m − 1 of the oDFS(T ), the process explores one of the Tj . This
means the value of X(t) will be the value of the respective XTj (k) for the appropriate k plus
the number of neigbours of the root that have yet to be fully explored.

We conclude this subsection with the remark that we can encode a graph without losing any
information by its depth first walk and marking the surplus edges below the graph of the walk.
See Figure 8 for an example.

Figure 8: A graph with 16 vertices, its depth first tree and its marked depth first walk.

3.2 Two ways of reconstructing a graph

We want to construct a graph from a pointset Q ⊂ N × N and a tree T on [m] with labels in
depth first order. First, we define Q∩f for a pointset Q and a continuous function f : R+ → R+:

Q∩ f := {(x, y) ∈ Q
∣∣0 < y ≤ f(x)}

This notation will later prove to be useful, as we do not have to restrict ourselves too much on
the pointsets, as we can also allow Q ⊆ R+ × R+.

We now construct GX(T,Q) as the inverse procedure from the depth first search in the pre-
vious section: By Lemma 3.2, we may add edges that are permitted by oDFS(T ) to receive a
graph whose depth first spanning tree is T . This way, we can obtain any connected graph on m
vertices. To construct GX(Q, T ) add those edges that correspond to the points of Q∩X, where
(X(t), 1 ≤ t < m) is the depth first walk on T . By Lemma 3.3 every point in the set Q ∩ X
corresponds to exactly one permitted edge.

To construct GH(Q, T ), we first need to define the height process of a tree: Assume the tree
is labeled in depth first order. Define (H(i), 0 ≤ i < m) as the height of the i + 1 vertex - the
graph distance between the root and vertex with label t+ 1. Like for the depth first walk X(t),
we define a continuous interpolation for H(s), s ∈ [0,m− 1]:

H(s) := H(bsc) + (s− bsc) · (H(bsc+ 1)−H(bsc))
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3.3 Distribution of connected random graphs

Now construct the graph GH(Q, T ): if (i, j) ∈ Q and 0 < 2j ≤ H(i), add an edge between
vertex vi and the vertex at distance (2j − 1) from the root on the path from vi to the root.
Because T is a tree, this path is unique and therefore the added edge is as well. It may happen
that the depth first tree of the graph constructed in this manner is not T . See Figure 9 for an
example.

Figure 9: A tree with 16 vertices and its depth first walk X(i) and height function H(i). The
same marked point induces different edges, the edge induced in GX is marked red and
the edge induced in GH is marked green.

3.3 Distribution of connected random graphs

In this section we want to find a way to construct an object similar to the Erdős-Renyi graph
but in terms of the constructions explained in the previous section. To do that, let T[m] be the
set of labeled trees with m vertices and GT the set of connected graphs for which their depth
first tree is T . The set

{GT : T ∈ T[m]}

clearly forms a partition for the connected graphs on [m] vertices. We now construct a connected
random graph:
Let 0 < p < 1 and m ∈ N. Select a tree T̃ pm from T[m] such that for any given tree T we have:

P(T̃ pm = T ) ∝ (1− p)−a(T )

where a(T ) is the area of T with respect to the depth first walk XT (and we write ∝ for
proportional to in the sense that there is a universal constant independent of T ). We also need
a so called binomial pointset Qp ⊂ N0 × N0. This means each point (i, j) ∈ N × N exists in
Qp independently with probability p. We will then use this to construct the graph GX in the
previous section, i.e. define:

G̃pm = GX(T̃ pm,Qp)

because T̃ pm and Qp are random, so is G̃pm. Another way to think of this, is to add each
edge permitted by oDFS(T̃ pm) independently with probability p. Furthermore, we write Gpm
for a connected component of G(n, p);n ≥ m - the Erdös-Renyi graph like described in the
introduction - with size m.
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3.4 Bridging the difference between GX and GH

Proposition 3.4 ([1, Prop. 8]). For any 0 < p < 1 and m ≤ n, the distributions of G̃pm and
Gpm are identical.

Proof. First, we note that the quantity s(G) = |E(G)| − (m− 1) for a connected graph on [m]
is the exact number of edges we have to remove to make G a tree. We call s(G) the surplus of
G. On the other hand, s(G) is the number of edges we need to add to some tree T to obtain G.
We observe for any connected graph G on [m]:

P(Gpm = G) ∝ P(G(m, p) = G)

=
(
pm−1(1− p)(

m
2 )−(m−1)

)(
ps(G)(1− p)−s(G)

)
∝ ps(G)(1− p)−s(G)

Again, we used ∝ when we left out universal constants for all G considered.
On the other hand:

P(G̃pm = G) ∝ (1− p)−a(T )P(G̃pm = G
∣∣T is the depth first tree of G)

= (1− p)−a(T )
(
p−a(T )(1− p)a(T )−s(T )

)
= ps(G)(1− p)−s(G)

We conclude:
P(Gpm = G) ∝ P(G̃pm = G) =⇒ P(Gpm = G) = P(G̃pm = G)

because probability measures are normalized.

3.4 Bridging the difference between GX and GH

In the previous subsections we have seen that on the one hand GX is closely related to a random
graph, yet on the other hand we will later see that the construction of GH translates naturally
into a continuous limit. Therefore, in this subsection we will derive bounds on the differences
between GX and GH . We remember that our notion of convergence is the Gromov-Hausdorff
distance as described in the previous chapter. Note that all bounds derived are deterministic.
First, we will derive a quick corollary from Proposition 2.10:

Corollary 3.5.

dGH(GX , GH) ≤ 1

2
sup
x,y∈V

|dH(x, y)− dX(x, y)|

Proof. This follows immediately from Propositon 2.10, for any correspondence R:

dGH(GX , GH) ≤ 1

2
dis R

The claim follow from choosing the natural correspondence:

R = {(k, k) : k = 1, ..., n} ⊂ [n]× [n] = V (GX)× V (GH)

Now we are in a position to derive a bound on the distance between GX and GH . This we
can do under the assumption that the pointsets inducing the additional edges are identical. In
fact, this does not have to be the case, but for our constructions of random graphs it will be
true with high probability.

Lemma 3.6 ([1, Lemma 20]). Suppose that Q ∩ X = Q ∩ (H/2) and write k = |Q ∩ X| =
|Q ∩ (H/2)|. Then

dGH(GX , GH) ≤ k(‖X −H/2‖+ 2).
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3.4 Bridging the difference between GX and GH

Figure 10: Part of a tree with its induced edges: the red edge is induced in GX and the green
edge is induced in GH . The blue path together with the red edge is the shortest path
between x and y in GX . The blue path together with the green path is the path we
use in GH instead.

Proof. We want to use the previous Corollary 3.5. Thus, we need to estimate the graph distances
in GX and GH respectively. Recall that the graph distance between two vertices x and y is the
length of the shortest path between x and y. Define some notation for paths in a graph: think
of a path as an ordered tupel of vertices, and we can concatenate two paths when the endpoint
of one path is the first vertex of the other path. Denote the concatenation operator by ⊕. For
example:

(1, 2, 4, 2)⊕ (2, 7, 1) = (1, 2, 4, 2, 7, 1)

Because GX and GH are constructed by adding edges to a tree T , a path in GX or GH can
sometimes traverse only edges in T . Thus, denote the shortest path from a to b in T by πT (a, b).
Similarly, denote the shortest path from a to b inGX orGH by πX(a, b) and πH(a, b) respectively.
Now, we let x, y ∈ V and let πX(x, y) be the shortest path between them in GX . Assume there
is exactly one edge on the path that was induced by the pointset Q∩X:

πX(x, y) = πT (x, u)⊕ (u,w)⊕ πT (w, y)

and the edge (u,w) was induced by (ξ, ξ′) ∈ Q ∩X. Construct a path π(x, y) in GH :

π(x, y) = πT (x, u)⊕ (u,wH)⊕ πX,H(wH , w)⊕ πT (w, y)

where (u,wH) was induced by the same point (ξ, ξ′) ∈ Q∩X = Q∩ (H/2) and some other path
πX,H which we will construct later. Without loss of generality assume that one of the endpoints
of this edge is u, otherwise it would be w and we could give use the same argument with reversed
roles for u and w. Then we get a bound on the difference of graph distances:

dH(x, y)− dX(x, y) ≤ |πX,H(wH , w)|

There is a unique path from u to the root and the vertex wH lies on that path due to the way
we construct GH . Furthermore, w has to be connected to this path with exactly one edge, as
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3.4 Bridging the difference between GX and GH

both u and w were active vertices at the same time during the depth first search. Thus, there
is a vertex w on the path from u to the root and d(w,w) = 1. And because w and wH share
their path to the root, their distance is determined by their respective height. We can improve
our estimate:

dH(x, y)− dX(x, y) ≤ |πX,H(wH , w)| ≤ |H(w)−H(wH)|+ 1

But because (u,w) and (u,wH) are induced by the same point (ξ, ξ′) ∈ Q, we have H(wH) =
2X(w) + 2:

dH(x, y)− dX(x, y) ≤ |H(w)−H(wH)|+ 1 ≤ |H(w)− 2X(w)|+ 3

≤ |2X(w)−H(w)|+ 4 ≤ ‖2X −H‖+ 4.

By reading the argument from bottom to top, we can derive a symmetric bound for reversed
roles of GX and GH .
Now consider any two vertices x′, y′ ∈ V . Now the shortest path between x′ and y′ can contain
up to k induced edges, thus we have to repeat the construction above up to k times. We then
get the estimate:

|dH(x′, y′)− dX(x′, y′)| ≤ k(‖2X −H‖+ 4) = 2
(
‖X − (H/2)‖+ 2

)
.

Using Corollary 3.5 we conclude:

dGH(GX , GH) ≤ 1

2
sup
x,y∈V

|dH(x, y)− dX(x, y)| ≤ k
(
‖X − (H/2)‖+ 2

)
.
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4 Convergence of the connected component

In the previous section we have discussed how to encode the Erdős-Rényi graph using the depth
first search. The information is encoded in a random function and a random set of points. In
this section we will prove convergence of those objects and piece them together to reach our
main goal - the scaling limit of the Erdős-Rényi graph.

4.1 Convergence of the depth first walk

In Theorem 2.16 we have seen that the rescaled contour function of a (depth first labeled) uniform
tree on [n] converges uniformly to an Brownian excursion. This result can be strenghtened
to the height function and to the depth first walk, again the limits are Brownian excursions.
Unsurprisingly, those encoding functions are far from independent, in fact they all converge to
the same limiting distribution:

Theorem 4.1 ([10]). As m→∞ :

1√
n

(Xn(bn·c), Hn(bn·c), Cn(n·)) d→ (e(·), 2e(·), 2e(·/2)).

Where Xn represents the depth first walk, Hn the height function and Cn the contour function
of a uniform tree on [n] with depth first labeling. The convergence takes place in D([0, 1],R+)
equipped with the Skorohod topology.

Because we do not interpolate Xn and Hn but rather view them as a step functions, we lose
continuity and thus we have to work in a different space. The choice is D([0, 1],R+), the space of
cadlag function, i.e. continuity on the right and limits on the left. Now, those functions can be
discontinuous and we let two functions be close if they jump at similar times and are otherwise
close in the supremum norm, formally:

Definition 4.2. A function f : [0, 1]→ R+ is an element of D([0, 1],R+) if for every x ∈ [0, 1]:

lim
t↓0

f(x+ t) = f(x) and lim
t↓0

f(x− t) exists

On this space, define the Skorohod topology, define:

Λ := {λ : [0, 1]→ [0, 1] : λ is continuous, strictly increasing and λ(0) = 0, λ(1) = 1}

Using this, we define a metric on D, let f, g ∈ D([0, 1],R+) :

d(f, g) = inf
λ∈Λ

max{‖f − g ◦ λ‖∞; ‖λ− id‖∞}

where id is the identity map on [0, 1]. This is a well defined metric and the induced topology is
called the Skorohod topology.

Check [4, Chapter 3] for more details.
The goal of this section is to derive an analogous result to Theorem 4.1, but not for uniform
trees, but for tilted trees with the probability distribution introduced at the beginning of section
3.3. Yet now we have a slightly different distribution for our trees and thus we need a slightly
different distribution of the limiting excursion. Define the space of continuous excursions:

E = {f ∈ C(R+,R+) : f(0) = 0, ∃σ ∈ (0,∞) and f(x) > 0 ∀x ∈ (0, σ) and f(x) = 0 ∀x ≥ σ}
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4.1 Convergence of the depth first walk

Definition 4.3. For σ > 0, define a tilted excursion of length σ, a random variable on E.

P
(
ẽ(σ) ∈ B

)
=

E
[
1{e(σ)∈B} exp

(∫ σ
0 e(σ)(s) ds

)]
E
[
exp

(∫ σ
0 e(σ)(s) ds

)]
Here, e(σ) is a Brownian excursion of length σ, characterized by (e(σ)(t), 0 ≤ t ≤ σ)

d
= (
√
σe(t/σ), 0 ≤

t ≤ σ) and e(·) is a standard Brownian excursion. Write ẽ for ẽ(1).

In the follwing results, we will prove statements only for σ = 1 for notational simpicity, the
proof for arbitrary σ always follows from the fact, that ẽ exhibts a scaling property in the same
way e does, i.e.:

(ẽ(σ)(t), 0 ≤ t ≤ σ)
d
= (
√
σẽ(t/σ), 0 ≤ t ≤ 1)

This property is refered to as Brownian scaling.

Theorem 4.4 ([1, Thm. 12]). Let p = p(m) and mp2/3 → σ for m→∞. Then:(√
σ

m
X̃m(b(m/σ)tc), 0 ≤ t ≤ σ

)
d→
(
ẽ(σ)(t), 0 ≤ t ≤ σ

)
in D([0, σ],R+).

Proof. Assume σ = 1, the general case follows from Brownian scaling like described above. Let
Tm be a uniformly chosen tree and (Xm(i), 0 ≤ i ≤ m) its depth-first walk. We already now by
Theorem 4.1 that (

m−1/2Xm(bmtc), 0 ≤ t ≤ 1
)

d→ (e(t), 0 ≤ t ≤ 1)

where e(t) is again a standard Brownian excursion. To go from uniform trees to tilted trees, we
need to check how the area a(Tm) behaves in the limit m→∞, observe:

m−3/2a(Tm) =
1

m

m−1∑
i=0

1

m1/2
Xm(i) =

∫ 1

0
X
m

(t) dt
d→
∫ 1

0
e(t) dt

where Xm
(t) = m−1/2Xm(bmtc) and the last step holds, because the integration operator

h 7→
∫ 1

0 h(t) dt is continuous. Furthermore observe:

(1− p)−a(Tm) = (1− p)−m3/2
∫ 1
0 X

m
(t) dt d→ exp

(∫ 1

0
e(t) dt

)

Now let f : D([0, 1],R+)→ R+
0 any bounded function. Then:

E
[
f
(
m−1/2X̃m(bm·c)

)]
=

E
[
f(X

m
)(1− p)−m3/2

∫ 1
0 X

m
(t) dt

]
E
[
(1− p)−m3/2

∫ 1
0 X

m
(t) dt

]

−→
E
[
f(e) exp

(∫ 1
0 e(s) ds

)]
E
[
exp

(∫ 1
0 e(s) ds

)] = E
[
f(ẽ)

]

Here we have used the uniform integrability of the family {(1−p)−ξa(Tm)}ξ>0 which is proven in

[1, Lemma 14]. Thus we have E
[
f
(
m−1/2X̃m(bm·c)

)]
→ E[f(ẽ)], which implies (m−1/2X̃m(bmtc), 0 ≤

t ≤ 1)
d→ (ẽ(t), 0 ≤ t ≤ 1).
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4.2 Convergence of the additional edges

In light of Theorem 4.1, we cite following related result:

Theorem 4.5 ([1, Thm. 15]). Let p = p(m) and mp2/3 → σ for m→∞. Then:(√
σ

m
H̃m(b(m/σ)tc), 0 ≤ t ≤ σ

)
d→
(

2ẽ(σ)(t), 0 ≤ t ≤ σ
)

in D([0, σ],R+).

4.2 Convergence of the additional edges

In Proposition 3.4 we have seen that the surplus edges of the Erdős-Rényi graph can be encoded
via binomial pointsets. Recall that we defined a binomial pointset as subset of Z+ × Z+ where
each point is included independently with probability p. We want to know how the distribution
of the surplus edges behaves when we rescale our space. For this we need to define Poisson point
processes on R+ × R+.

Definition 4.6. A random variable P taking values in the countable subsets of R+×R+ is called
Poisson point process if for disjoint measureable bounded sets A1, ..., Ak ⊂ R+ × R+, k ∈ N, we
have:

• N(Ai) := #(P ∩Ai), i = 1, ..., k are independent random variables.

• N(Ai) ∼ Poisson(µ(Ai)) for any Ai, i = 1, .., k.

where µ denotes the two-dimensional Lebesgue measure and # the cardinality of a set.

See [8, Chapter 24] for existence and [8, Korollar 24.9] ensures that our specification of the
distribution defines P uniquely.
A simple fact for this Poisson point process is that P has almost surely only finitely many

points in any compact set and almost surely no points in a any null set. See Figure 11 for
illustration.

Figure 11: A realization of a Poisson point process with measure µ restricted to [0, 5] × [0, 5],
simulated using R.

The next lemma is perhaps the most crucial one in this thesis: it classifies the joint convergence
of the height process and the additional edges and thus all necessary information contained in
the Erdős-Rényi graph:
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4.2 Convergence of the additional edges

Lemma 4.7 ([1, Lemma 18]). Let p = p(m) and mp2/3 → σ for m → ∞. Recall that T̃ pm is a
random tree on [m] and let H̃m be its height process. Let Qp ⊆ Z+ × Z+ be a binomial pointset
of intensity p. Define:

Pm = {((m/σ)−1i, (m/σ)−1/2j) : (i, j) ∈ Qp}

a rescaled version of Qp, we will use this notation throughout the rest of the thesis. Then:

(((m/σ)−1/2H̃m(b(m/σ)tc), 0 ≤ t ≤ σ),Pm∩((m/σ)−1/2H̃m(b(m/σ)tc)/2, 0 ≤ t ≤ σ))
d→ (2ẽ(σ),P∩ẽ(σ))

where P is a Poisson point process like defined above such that P is independent of ẽ(σ). Conver-
gence takes place in D([0, σ],R+) in the first coordinate and in the sense of Hausdorff distance
in the second coordinate.

Proof. Assume σ = 1, the general case follows from Brownian scaling like described above. By
Theorem 4.5 we have:

(m−1/2H̃m(bmtc), 0 ≤ t ≤ 1)
d→ (2ẽ(t), 0 ≤ t ≤ 1)

in D([0, 1],R+). Thus, we will show Pm
d→ P and then show that joint convergence holds. Let

k ≥ 1 and A1, ..., Ak ⊂ [0, 1]× R+ be disjoint, measurable and bounded sets. Define

Nm(Ai) = #{(bm−1/2xc, bmyc) ∈ Qp : (x, y) ∈ Ai}

the set of lattice points that are both in Qp and the rescaled Ai. This is a binomial random
variable with parameters ηm(Ai) := #{bm−1/2xc, bmyc) : (x, y) ∈ Ai} and p. Because ηm(Ai)
approximates Ai by rectangles of size m−3/2 we have:

m−3/2ηm(Ai)
m→∞−→ µ(Ai)

Combined with m3/2p → 1 this implies Nm(Ai)
d→ Poisson(µ(Ai)). Furthermore, the random

variables Nm(A1), ..., Nm(Ak) are independent as they count points of disjoint sets. By [8,
Korollar 24.9] this identifies the limit in distribution of Pm uniquely as P.
Next, we will proof two general claims:

Claim: Assume fn : [0, 1] → R+ continuous converges uniformly to some f : [0, 1] → R+. For
any open set A ⊆ [0, 1]× R+ consider{

An = {(x, y) ∈ A : 0 < y < fn(x)}
A∗ = {(x, y) ∈ A : 0 < y < f(x)}

Then An → A∗ in the Hausdorff sense.
Proof of Claim: First consider:{

Bn = {(x, y) ∈]0, 1[×R+ : 0 < y < fn(x)}
B∗ = {(x, y) ∈]0, 1[×R+ : 0 < y < f(x)}

Then using the fact that fn is uniformly bounded and thus all sets Bn, B∗ are bounded:

dH(Bn, B) ≤ dH(∂Bn, ∂B∗) ≤ ‖fn − f‖
n→∞−→ 0

Thus Bn → B∗ in the Hausdorff sense. Because An = Bn ∩ A and A∗ = B∗ ∩ A it follows that
Bn ∩A→ B∗ ∩A. �
Claim: Suppose gn : {0, ..., n} → Z+, ‖gn‖ ≤ n and (n−1/2gn(bntc, 0 ≤ t ≤ 1) converges
to (g(t), 0 ≤ t ≤ 1) in D([0, 1],R+) such that g is continuous. Then the linear interpolation
g̃n : [0, 1]→ R+ of (n−1/2gn(nt) : t ∈ {0, 1/n, ..., 1}) converges uniformly to g.
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4.3 Limit object

Proof of Claim: By our definition of D([0, 1],R+), we find a sequence (λn)n ∈ Λ such that
max{‖n−1/2gn(bn·c)− g ◦ λn‖∞, ‖λn − id‖} → 0. Now:

‖g̃n − g‖ ≤ ‖g̃n − n−1/2gn(bn·c)‖+ ‖n−1/2gn(bn·c)− g ◦ λn‖+ ‖g ◦ λn − g‖
= n−1/2 sup

t∈[0,1]
|gn(bntc) + n−1(nt− bntc)(gn(bntc+ 1)− gn(bntc))− gn(bntc)|+

‖n−1/2gn(bn·c)− g ◦ λn‖+ sup
t∈[0,1]

sup
|t−t′|≤εn

|g(t)− g(t′)|

≤ 2n−1/2 + ‖n−1/2gn(bn·c)− g ◦ λn‖+ sup
t∈[0,1]

sup
|t−t′|≤εn

|g(t)− g(t′)| n→∞−→ 0

for εn = ‖λn − id‖. The second term tends to zero by assumption and the third term tends to
zero because εn → 0 and g is uniformly continuous. �
We now apply the second claim to the height process H̃m : {0, ...,m} → Z+. With the remark

above we get that the rescaled linear interpolation of H̃m converges uniformly. Thus by the first
claim, following convergence holds for Pm because Pm is independent of H̃m:

Pm ∩ (m−1/2H̃m
inter/2(mt), 0 ≤ t ≤ 1)

d→ P ∩ (ẽ(t), 0 ≤ t ≤ 1)

in the Hausdorff sense and where H̃m
inter is the interpolated version of H̃m. We have also used

the fact that P ∩ {(x, y) ∈ R+ ×R+ : x ∈ [0, 1], 2ẽ(x) = y} = ∅ almost surely. Because H̃m(b·c)
and H̃m

inter(·) agree on lattice points, we have:

Pm ∩ (m−1/2H̃m/2(bmtc), 0 ≤ t ≤ 1)
d→ P ∩ (ẽ(t), 0 ≤ t ≤ 1)

in the Hausdorff sense jointly with the convergence of H̃m.

4.3 Limit object

Lemma 4.7 suggests that the information needed to constructGH converges nicely after rescaling.
Thus it is natural to define a glueing procedure as similar construction in the continuous case.
Given a continuous function h : [0, σ]→ R+ such that h(0) = h(σ) = 0 and a set P ⊂ R+ ×R+

such that P ∩(h/2) is finite, define g(h, P ): Let T be the real tree encoded by the height function
h with its projection ρ : [0, σ] → T and root ρ(0) - compare to Theorem 2.7. For every point
(ξx, ξy) ∈ P ∩ (h/2), there is a vertex ρ(ξx) ∈ T at height h(ξx). Because T is a real tree, there
is a unique geodesic of length h(ξx) from ρ(ξx) to the root. Denote the unique point at height
2ξy on this geodesic by ρ̂(ξx, ξy). Identify ρ̂(ξx, ξy) and ρ(ξx) for each (ξx, ξy) ∈ P and equip the
resulting space with the induced path metric.

Definition 4.8 (Continuum Random Graph). Let 0 < σ <∞. Let ẽ(σ) be a tilted excursion of
length σ and P a Poisson point process with intensity measure µ - the Lebesgue measure. Then:

M(σ) = g(2ẽ(σ),P)

is the Continuum Random Graph with parameter σ. WriteM :=M(1).

There is a more intuitive description for this object: Take the continuum random tree T
encoded by 2ẽ(σ). Select a random number N of points on [0, σ] with density proportional to
ẽ(σ). There is a unique point τ in T corresponding to each random pondom point on [0, σ].
Identify τ with a uniformly chosen point on the geodesic from τ to the root for each random
point. This can be justified formally:

Proposition 4.9 ([1, Prop. 19]). Using the notation above, conditional on ẽ(σ), following state-
ments hold for the continuum random graph:
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4.3 Limit object

1. For any (ξx, ξy) ∈ P ∩ ẽ(σ), ξx has density

ẽ(σ)(u)∫ σ
0 ẽ(σ)(s) ds

on [0, σ]. Furthermore, ρ(ξx) is almost surely a leaf of T .

2. We have d(ρ(0), ρ̂(ξx, ξy)) := 2ξy = Ud(ρ(0), ρ(ξx)), where U is a uniform random variable
on [0, 1], independent of ẽ(σ) and ξx.

3. The number of additional vertex identification N has a Poisson distribution with mean∫ σ
0 ẽ(σ)(s) ds.

Proof. 1. Again, let µ be the two dimensional Lebesgue measure. Any point (ξx, ξy) ∈ P∩ẽ(σ)

is located uniformly in all possible positions, thus for any [a, b] ⊆ [0, σ]:

P(ξx ∈ [a, b]) = P((ξx, ξy) ∈ ([a, b]× R+) ∩ ẽ(σ)) =

∫ b
a ẽ

(σ)(u) du∫ σ
0 ẽ(σ)(s) ds

It follows that ξx has the claimed density. Let L(T ) be the leaves of T . Then:

P(ρ(ξx) ∈ L(T )) =

∫ σ

0
1{ρ(u)∈L(T )}

ẽ(σ)(u)∫ σ
0 ẽ(σ)(s) ds

du =

∫ σ
0 ẽ(σ)(u) du∫ σ
0 ẽ(σ)(s) ds

= 1

The distribution of ẽ(σ) is absolutely continuous with respect to e(σ), this implies that
we can use Proposition 2.17 to achieve 1{ρ(u)∈L(T )} = 1 almost surely for almost all ẽ(σ).
Therefore, ρ(ξx) is almost surely a leaf.

2. Similar to 1., conditional on ξx, ξy is distributed uniformly on [0, ẽ(σ)(ξx)], the statement
follows when we identify the interval with the geodesic path from ρ(ξx) to the root.

3. The number of vertex identifications is precisely the number of marked points under the
graph of ẽ(σ), thus:

N = |P ∩ ẽ(σ)| d= Poisson

(∫ σ

0
ẽ(σ)(s) ds

)
.

Figure 12: A realization of the Continuum Random Graph. The picture was made by Nicolas
Broutin, source: maths.ox.ac.uk/node/30217.
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4.4 Convergence of the rescaled Erdős-Rényi graph

To finish this section, we cite a lemma that allows us to compare two different metric spaces
that were both obtained by the glueing procedure. Let h1, h2 be two suitable height functions of
length σ and Q1,Q2 two suitable pointsets. Denote G1 = g(h1,Q1) and G2 = g(h2,Q2), then:

Lemma 4.10 ([1, Lemma 21]). Suppose that k = |Q1 ∩ (h1/2)| = |Q2 ∩ (h2/2)| and δ =
dH(Q1 ∩ (h1/2),Q2 ∩ (h/2)). Then:

dGH(G1, G2) ≤ 1

2
(k + 1)

(
δ + 12‖h1 − h2‖∞ + 4 sup

|r−r′|≤δ
|h2(r)− h2(r′)|

)
Sketch of proof. The proof is similar to the proof of Lemma 3.6 as we estimate the Gromov
Hausdorff distance using Propositon 2.10 and the natural correspondence:

dGH(G1, G2) ≤ 1

2
sup

t,t′∈[0,1]
|d1(ρ1(t), ρ1(t′))− d2(ρ2(t), ρ2(t′))|

where d1, d2 denote the metrics in G1 and G2 respectively and ρ1, ρ2 the projections from [0, σ]
into G1 and G2. The graphs are equipped with the path metric, thus we need to estimate the
length of geodesics. Denote the points of Q1 ∩ (h1/2) by ξ1, ..., ξk and the points of Q2 ∩ (h2/2)
by η1, ..., ηk. Because dH(Q1 ∩ (h1/2),Q2 ∩ (h/2)) ≤ δ, we can relabel those points such that

sup
i=1,...,k

‖ξi − ηi‖ ≤ δ.

Let x, y ∈ G1 such that x = ρ1(t), y = ρ1(t′) : t, t′ ∈ [0, σ] and π1(x, y) be the geodesic in
G1 connecting x and y. We then construct another path π2(ρ2(t), ρ2(t′)) in G2. We can split
π1(x, y) up into at most k segements

π1(x, y) = π(x, u1)⊕
l−1⊕
j=1

π(uj , uj+1)⊕ π(ul, y)

where π(·, ·) is a geodesic in the underlying real tree of G1, ⊕ is the concatenation operator and
uj ; j = 1, ..., l ≤ k is a point where a vertex identification is induced by Q1. This means that
uj = ρ1(ξi) for every j and some i = i(j). We then construct the path in G2 by traversing the
vertex identification ρ2(ηi) whenever ρ1(xi) is traversed. This will contribute a length difference
of at most (δ+2 sup|r−r′|≤δ |h2(r)−h2(r′)|) for each vertex identification. The geodesic segments
in the underlying real tree of G1 can be approximated by geodesic segments in the underlying
real tree of G2 contibuting a length difference proportional to ‖h1−h2‖∞ according to Corollary
2.11. Using a symmetric argument for switched roles of G1 and G2 and

sup
|r−r′|≤δ

|h1(r)− h1(r′)| ≤ 2‖h1 − h2‖+ sup
|r−r′|≤δ

|h2(r)− h2(r′)|

to obtain the final estimate.

4.4 Convergence of the rescaled Erdős-Rényi graph

In this section we will combine our previous results to prove the main theorem which we can
finally state:

Theorem 4.11 ([1, Thm. 22]). Suppose σ > 0 and m = m(n) ∈ Z+ such that n−2/3m → σ.
Let p = p(n) ∈ (0, 1) such that pn → 1. Let Gpm a connected component of G(n, p) conditioned
on size m. Then, as n→∞ :

n−1/3Gpm
d→M(σ)

as metric spaces with respect to the Gromov-Hausdorff distance.
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4.4 Convergence of the rescaled Erdős-Rényi graph

Before we proof the Theorem, we will derive two important corollaries. Using Theorem 2.5
we obtain the following:

Corollary 4.12. Consider G(n, 1/n). Denote the largest component by G1
n and its size by Zn.

Then there is a non-trivial random variable Z such that as n→∞:

(n−2/3Zn, n
−1/3G1

n)
d→ (Z,M(Z))

where the convergence in the second component is with respect to the Gromov-Hausdorff distance.

This means that the largest component of the critical Erdős-Rényi graph approaches the
continuum random graph when rescaled by factor n−1/3.
Furthermore, we can make a statement on the number of cycles in the critical Erdős-Rényi

graph. Recall that the surplus s(G) of a connected graph G is the minimal number of edges
which we have to remove to obtain a tree.

Corollary 4.13 ([1, Cor. 24]). Suppose that m = m(n) is such that n−2/3m → σ as n → ∞
and let p = p(n) such that pn→ 1. Then:

s(Gpm)
d−→ Poisson

(∫ σ

0
ẽ(σ)(s) ds

)
.

Proof of Corollary: Observe:

s(Gpm)
d
= |Pm ∩ ((m/σ)−1/2X̃m(bm/σ)tc), 0 ≤ t ≤ σ)| d−→ |P ∩ ẽ| d= Poisson

(∫ σ

0
ẽ(σ)(s) ds

)
The joint convergence of Pm and X̃m follows an analogous argument like Lemma 4.7.

Proof of Theorem 4.11. Assume σ = 1, the general case follows from Brownian scaling like
described above.
Recall that by Proposition 3.4 GX and the Erdős-Rényi graph are closely related. We want
to make use of GH and its similarity to the glueing procedure g(·, ·). We then want to apply
Lemma 3.6 and Lemma 4.10 to obtain estimates on the Gromov-Hausdorff distances. Thus the
proof consists of two parts: in the first part we will deal with estimates concering GH and g(·, ·),
and in the second part we will deal with estimates concerning GX and GH .
Part 1:

We will only sketch this part. While the constructions GH(·, ·) and g(·, ·) are very similar, the
graph m−1/2GH(T̃ pm,Qp) viewed as metric space is not the same as g(m−1/2H̃m

c ,Qp), where H̃m
c

is the continuous interpolation of H̃. The reason for this is simple: in m−1/2GH(·, ·) we insert
edges of length m−1/2 where as in g(·, ·) we identify points. Furthermore, the function H̃m

c

does not encode the R-tree T̃ pm but the contour function C̃m does. Thus we first approximate
m−1/2GH(T̃ pm,Qp) by g(C̃mr ,Qm), where C̃mr (t) = m−1/2C̃mr (2mt), 0 ≤ t ≤ 1 is the rescaled
version of C̃m:

dGH(m−1/2GH(T̃ pm,Qp), g(C̃mr ,Qm)) ≤ 1

2
m−1/2k

where k is the number of vertex identifications. The reason for this is that both metric spaces
have the same underlying real tree and adding an edge of lengthm−1/2 instead of an identification
can only change the distortion by at most m−1/2, the factor 1/2 is contributed by Lemma 2.10.
Also note, that we replaced Qp (or rather Pm) by another set Qm - the specific definition does
not matter too much - to make up for the fact that we change from the height function to the
contour function.
Our next goal is to apply Lemma 4.10. To fulfill the prerequisites of the lemma we apply

Skorohod’s representation theorem to Lemma 4.7, thus:
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4.4 Convergence of the rescaled Erdős-Rényi graph

(m−1/2H̃m(bm·c), C̃mr (·),Pm ∩ (m−1/2H̃m(bm·c)/2))→ (2ẽ, 2ẽ,P ∩ ẽ)

almost surely in some probability space. Let ε > 0 be arbitrary but fixed. Then there is an
almost surely random variable Y such that for every m ≥ Y :

• |Pm ∩ (m−1/2H̃m(bm·c)/2)| = |P ∩ ẽ|,

• dH(Pm ∩ (m−1/2H̃m(bm·c)/2),P ∩ ẽ) ≤ ε,

• ‖C̃mr − 2ẽ‖ ≤ ε and

• dH(Qm,Pm ∩ (m−1/2H̃m(bm·c)/2)) ≤ ε.

We then also get that dH(Qm, P ∩ ẽ) ≤ 2ε. This means that for big enoughm, the prerequisites
of Lemma 4.10 are fulfilled and we apply it to g(C̃mr ,Qm) and g(2ẽ,P):

dGH(g(C̃mr ,Qm), g(2ẽ,P)) ≤ 1

2
(|P ∩ ẽ|+ 1)

(
2ε+ 12ε+ 4 sup

|t−s|≤2ε

∣∣2ẽ(t)− 2ẽ(s)
∣∣)

Switching back to GH , we get:

dGH(m−1/2GH(T̃ pm,Qp), g(2ẽ,P)) ≤ 1

2
((1 +m−1/2)|P ∩ ẽ|+ 1)

(
14ε+ 8 sup

|t−s|≤2ε

∣∣ẽ(t)− ẽ(s)∣∣)

Levy’s Modulus of Continuity Theorem (check [11, Thm. 2.7] for a proof) tells us:

P

(
sup
|t−s|≤2ε

|e(t)− e(s)| ≥ ε1/4
)
→ 0

as ε → 0 for a standard Brownian excursion e. Because the distribution of ẽ(·) is absolutely
continuous with respect to e(·), the same holds for ẽ(·). Furthermore:

P(|P ∩ ẽ| ≥ ε−1/8) ≤ P

(
|P ∩ ẽ| ≥ ε−1/8

∣∣∣∣∣
∫ 1

0
ẽ(s) ds ≤ ε−1/16

)
+ P

(∫ 1

0
ẽ(s) ds ≤ ε−1/16

)

We estimate both terms using Markov’s inequality:

P

(∫ 1

0
ẽ(s) ds ≤ ε−1/16

)
≤ E

[∫ 1

0
ẽ(s) ds

]
ε1/16 = Lε1/16

P

(
|P ∩ ẽ| ≥ ε−1/8

∣∣∣∣∣
∫ 1

0
ẽ(s) ds ≤ ε−1/16

)
≤ ε1/8E[Z] = ε1/16

where Z is distributed like a Poisson(ε−1/16) random variable and L = E
[∫ 1

0 ẽ(s) ds
]
is finite.

Because ε was arbitrary and recall the definitionM = g(2ẽ,P). We obtain

dGH(m−1/2GH(T̃ pm,Qp),M)
P→ 0

completing the first part of the proof.
Part 2:

By Proposition 3.4 we know that a connected component of G(n, p) conditioned on having m
vertices is distributed like GX(T̃ pm,Qp). Thus it is enough to show that GX and GH converge
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4.4 Convergence of the rescaled Erdős-Rényi graph

to the same limit after rescaling. By applying Skorohod’s representation theorem to Theorem
4.4 and Lemma 4.7, there is a probability space such that almost surely:(H̃m(bmtc)√

m
, 0 ≤ t ≤ 1

)
,

(
X̃m(bmtc)√

m
, 0 ≤ t ≤ 1

)
,Pm ∩

(
H̃m(bmtc)

2
√
m

, 0 ≤ t ≤ 1

)
d−→
(
(2ẽ(t), 0 ≤ t ≤ 1), (ẽ(t), 0 ≤ t ≤ 1),P ∩ (ẽ(t), 0 ≤ t ≤ 1)

)
Furthermore by [1, Lemma 16], we may assume that m−1/2‖X̃m − H̃m/2‖∞ → 0 almost surely.
Consider the integer valued random variable

Dm = |(Qp ∩ X̃m)4(Qp ∩ (H̃m/2))|

the size of the symmetric difference. Dm is stochastically dominated by a Binomial random
variable D′m with parameters md‖X̃m − H̃m/2‖∞e and m−3/2 in the sense that for any l ∈ N0:

P(Dm ≥ l) ≤ P(D′m ≥ l)

Because m−3/2md‖X̃m − H̃m/2‖∞e ≤ m−1/2‖X̃m − H̃m/2‖∞ +m−1/2 → 0, we have that

D′m
P−→ 0.

This can be improved to D′m
a.s.−→ 0 since D′m is integer valued. Furthermore:

lim
m→∞

P(Dm 6= 0) ≤ lim
m→∞

P(D′m 6= 0) = 0

In other words: the probability that the prerequisite of Lemma 3.6 is fulfilled tends to 1 as
m→∞. By Lemma 3.6 we have:

dGH(GX(T̃ pm,Qp), GH(T̃ pm,Qp)) ≤ |Qp ∩ X̃m| ·
(
‖X̃m − H̃m/2‖+ 2

)
Thus, we can estimate for any ε > 0:

P
(
dGH(GX(T̃ pm,Qp), GH(T̃ pm,Qp)) ≥ εm1/2

)
≤ P

(
|Qp ∩ X̃m| ·

(
‖X̃m − H̃m/2‖+ 2

)
≥ εm1/2

)
+ P

(
Qp ∩ X̃m 6= Qp ∩ (H̃m/2)

)
We split the first event on the righthand side into two parts:{

|Qp ∩ X̃m| ·
(
‖X̃m − H̃m/2‖+ 2

)
≥ εm1/2

}
⊂
{
|Qp ∩ X̃m| ≥ m1/8

}
∪
{
‖X̃m − H̃m/2‖ ≥ εm3/8 − 2

}
Now we can estimate their probabilities separately:

P
(
|Qp ∩ X̃m| ≥ m1/8

)
≤ m−1/8E[|Qp ∩ X̃m|]

by Markov’s inequality. And by [1, Lemma 16]:

P
(
‖X̃m − H̃m/2‖ ≥ εm3/8 − 2

)
≤ 2Kε−1/6m−1/16

for a universal constant K and m big enough. Furthermore, this term tends to 0 when m→∞.
Observe:

E
[
|Qp ∩ X̃m|

]
−→ E[|P ∩ ẽ|] = E

[∫ 1

0
ẽ(s) ds

]
<∞
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4.5 Diameter of the largest component

This implies that m−1/8E
[
|Qp ∩ X̃m|

]
−→ 0. Combining all of the estimates above, we can

conclude:
P
(
dGH(GX(T̃ pm,Qp), GH(T̃ pm,Qp)) ≥ εm1/2

)
−→ 0

as m→∞. Finally:

dGH(m−1/2GX(T̃ pm,Qp),M) ≤ m−1/2dGH((GX(T̃ pm,Qp), (GH(T̃ pm,Qp))
+ dGH(m−1/2GH(T̃ pm,Qp),M)

P−→ 0

where the first term converges to 0 in probability by the reasoning above and the second terms by
part 1. The result now follows because m−1/2GX(T̃ pm,Qp)

d
= m−1/2Gpm and m−1/2n1/3 → 1.

4.5 Diameter of the largest component

While the continuum random graphM is an interesting object on its own, its most important
property may be that it turns up as scaling limit of the Erdős-Rényi graph. The reason for
this is that it is very easy to derive asymptotics of the Erdős-Rényi graph from the continuum
random graph. For example, consider the diameter of a graph:

diam G = sup
x,y∈[n]

d(x, y)

for a connected graph G with n vertices. This notion coincides with the diameter of metric
spaces when we view a graph as metric space. Furthermore, we have the estimate:

1

2
|diam X1 − diam X2| ≤ dGH(X1, X2)

for two connected metric spaces X1 and X2. Thus the diameter is a continuous function from
the space of connected metric spaces equipped with the Gromov-Hausdorff topology to the real
numbers. This has an important probabilistic consequence: when Xn

d→ X as metric spaces, we
have:

diam(Xn)
d−→ diam(X)

Thus we can apply this to Theorem 4.11:

Corollary 4.14 ([1, Thm. 5]). Consider G(n, 1/n). Denote the largest component by G1
n. Then

there is a non-zero random variable D with finite expectation such that:

n−1/3diam(G1
n)

d−→ D.

In other words: the diameter of the largest component of the critical Erdős-Rényi graph grows
proportional to n1/3.
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5 Conclusion and outlook

This thesis started from the observation that the Erdős-Rényi graph, which is the simplest and
therefore most important model for a random graph, exhibits a phase transition at λ = 1, where
the graph jumps from being sparsely connected to highly connected. In order to understand the
nature of the critical graph in more detail, we were using a global scaling approach.
To do so, we made use of the extremely powerful relation between graphs and certain functions.

In this thesis, we discussed three different encoding functions that can be defined starting from
a given graph: the contour function, the height function and the depth first walk. The last case
uses depth first search, an algorithm which allows us to select a spanning tree of a connected
graph in a canonical way. We also proved that the surplus edges of the Erdős-Rényi graph can
be tracked by marked points under the graph of the depth first walk.
We then discussed how to construct a graph out of these functions and marked points in two

different ways: one of those methods was closely related to the Erdős-Rényi graph and the other
method translated well into a similar construction which we used to define the continuum random
graph. The continuum random graph is a random metric space and restricted to sufficiently
small neighbourhoods the continuum random graph exhibts a tree-like structure in the sense of
R-trees. We showed that both the functions and the marked points converge after rescaling from
which we concluded that the largest component of the critical Erdős-Rényi graph converges in
Gromov-Hausdorff distance to the continuum random graph.
Lastly, we have proven a corollary concering the diameter of the critical Erdős-Rényi graph.

There we can clearly see the strength of the approach with scaling limits: we easily derived that
the diameter grows proportionately to n1/3.
We also want to note that many results that we derived for the largest component like or

Theorem 4.11 or Corollary 4.14 still hold for the i−th largest component. The reason for this is
that an equivalent statement to Theorem 2.5 holds not only for the largest component but also
for the i-th largest component. Furthermore, Theorem 2.5 can be generalized in another way:
if we consider p = 1/n + θ/n4/3 with θ ∈ R instead of p = 1/n, the theorem still holds4. In all
the other proofs we only needed that np→ 1 and therefore all results hold. Thus, [1, Theorem
25] - which is the more general version of Theorem 4.11 in a sense - concerns itself not only with
a single component but with the whole sequence of connected components and with the more
general case of p = 1/n+ θ/n4/3.

4These values for p are called the critical window of the Erdős-Rényi graph.
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